

|          |  |  |  | Sub | ject | Coc | ie: F | CCE | 2502 |
|----------|--|--|--|-----|------|-----|-------|-----|------|
| Roll No: |  |  |  |     |      |     |       |     |      |

Printed Page: 1 of 3

## BTECH (SEM V) THEORY EXAMINATION 2023-24 STRUCTURAL ANALYSIS

TIME: 3 HRS M.MARKS: 100

**Note:** Attempt all Sections. If require any missing data; then choose suitably.

#### **SECTION A**

## 1. Attempt all questions in brief.

| Q no. | Question                                                    | Marks | CO |
|-------|-------------------------------------------------------------|-------|----|
| a.    | What do you understand by the term structural load?         | 2     | 1  |
| b.    | Discuss the cable.                                          | 2     | 1  |
| c.    | What do you mean by compound and complex space truss?       | 2     | 2  |
| d.    | What are the various types of supports?                     | 2     | 2  |
| e.    | Define the term strain energy or resilience of the member.  | 2     | 3  |
| f.    | Write the statement of Castigliano's first theorem.         | 2     | 3  |
| g.    | What do you understand by influence line?                   | 2     | 4  |
| h.    | State Muller-Breslau's principle for determinate structure. | 2     | 4  |
| i.    | What are the different types of arches?                     | 2     | 5  |
| j.    | Define horizontal thrust.                                   | 2     | 5  |

# SECTION B

## 2. Attempt any *three* of the following:

| Q no. | Question                                                                                                                                                                                          | Marks | CO |
|-------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|----|
| a.    | Find the SI & KI of the following truss and frame.  A B C A B C A B C A B C A B C A B C A B C A B C A B C A B C A B C A B C B C                                                                   | 10    | 1  |
| b.    | Analyze the truss shown in Fig. by the method of tension coefficient and determine the forces in all the members.  80 kN  B  C  60°  60°  60°  60°  C  60°  C  C  C  C  C  C  C  C  C  C  C  C  C | 10    | 2  |
| c.    | State and prove the Maxwell's reciprocal theorem.                                                                                                                                                 | 10    | 3  |

|          |  |  |  | Sub | ject | Coc | de: F | CE | 2502 |
|----------|--|--|--|-----|------|-----|-------|----|------|
| Roll No: |  |  |  |     |      |     |       |    |      |

Printed Page: 2 of 3

## BTECH (SEM V) THEORY EXAMINATION 2023-24 STRUCTURAL ANALYSIS

TIME: 3 HRS M.MARKS: 100

| d. | A single load of 150 kN moves on a girder or span 30 m. Construct the   | 10 | 4 |
|----|-------------------------------------------------------------------------|----|---|
|    | influence line for shear force and bending moment for a section 10 m    |    |   |
|    | from the left support.                                                  |    |   |
| e. | A three hinged semicircular arch of radius R carries a UDL of w per run | 10 | 5 |
|    | over the whole span. Find Horizontal thrust & Location and magnitude    |    |   |
|    | of maximum bending moment.                                              |    |   |

#### **SECTION C**

# 3. Attempt any *one* part of the following:

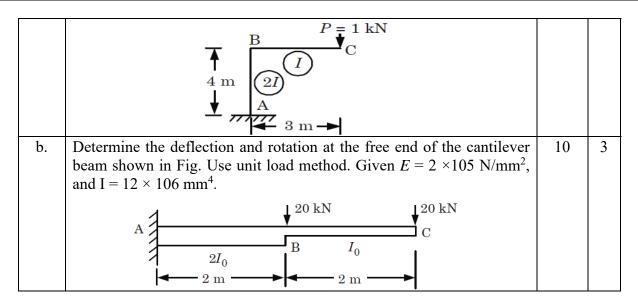
| Q no. | Question                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Marks | CO |
|-------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|----|
| a.    | A cable of uniform cross-sectional area is stretched between two supports 100 m apart with one end 4 m above the other end as shown in Fig. The cable is loaded with a UDL of 10 kN/m and the sag of cable measured from higher end is 6 m. Find the horizontal tension in the cable. Also find the maximum tension in the cable.  VA $VA$ $VB$ $V$ | 10    | 1  |
| b.    | Derive the expression for Length of the Cable if Both ends are at the Same level.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 10    | 1  |

# 4. Attempt any *one* part of the following:

| Q no. | Question                                                             | Marks | CO |
|-------|----------------------------------------------------------------------|-------|----|
| a.    | Explain in detail about method of substitution and method of tension | 10    | 2  |
|       | coefficient with examples.                                           |       |    |
| b.    | Find the forces in the members of the given truss.                   | 10    | 2  |
|       | 20 kN 1 2 70 kN 3 m 3 m 3 m                                          |       |    |

## 5. Attempt any *one* part of the following:

| Q no. | Question                                                                | Marks | CO |
|-------|-------------------------------------------------------------------------|-------|----|
| a.    | Determine the vertical deflection at point C in the frame shown in Fig. | 10    | 3  |
|       | Given E = $200 \text{ kN/mm2}$ and I = $30 \times 106 \text{ mm4}$ .    |       |    |




|          |  |  |  | Sub | ject | Coc | ie: F | CCE | <i>5</i> 02 |
|----------|--|--|--|-----|------|-----|-------|-----|-------------|
| Roll No: |  |  |  |     |      |     |       |     |             |

Printed Page: 3 of 3

## BTECH (SEM V) THEORY EXAMINATION 2023-24 STRUCTURAL ANALYSIS

TIME: 3 HRS M.MARKS: 100



## 6. Attempt any *one* part of the following:

| Q no. | Question                                                             | Marks       | CO |
|-------|----------------------------------------------------------------------|-------------|----|
| a.    | What are the propositions used for several point loads moving over a | 10 <b>c</b> | 4  |
|       | simply supported beam? Explain and prove propositions1.              | 0           |    |
| b.    | A Uniformly distributed load of intensity 30 kN/m crosses a simply   | 10          | 4  |
|       | supported beam of span 60 m from left to right. The length of UDL is |             |    |
|       | 15m. Find the value of maximum bending moment for a section 20 m     | • '         |    |
|       | from left end. Find also the absolute value of maximum bending       |             |    |
|       | moment and shear force in the beam.                                  |             |    |

## 7. Attempt any *one* part of the following:

| Q no. | Question                                                                    | Marks | СО |
|-------|-----------------------------------------------------------------------------|-------|----|
| a.    | Show that the parabolic shape is a funicular shape for a three hinged       | 10    | 5  |
|       | arch subjected to a uniformly distributed load over its entire span.        |       |    |
| b.    | A three hinged parabolic arch of 60 m span and a rise of 12 m are           | 10    | 5  |
|       | subjected to a uniformly distributed load of 30 kN/m intensity over its     |       |    |
|       | left half portion and point load of 120 kN at right quarter span. Calculate |       |    |
|       | the bending moment, normal thrust and radial shear at a section 15 m        |       |    |
|       | from the left support.                                                      |       |    |